Modelización de propiedades fisico-químicas de sistemas de interés catalítico

M. Verónica Ganduglia-Pirovano

Modeling for Theoretical Catalysis Group

Institute of Catalysis and Petrochemistry, CSIC, Madrid, Spain

Till 2010: Humboldt University Berlin, Berlin, Germany

Heterogeneous catalysis

□ Catalysts work by providing lower activation barrier

□ Metal or oxide catalysts are typically supported

ightarrow increase surface area & lower cost

support-catalyst interaction affects reactivity

Understanding catalysis at the atomic level ↔ Rational design

Problems → the structural complexity of most catalysts the pressure gap – UHV vs. real conditions

Solutions -> suitable experimental and theoretical model systems

unknown exchange-correlation potential

Local Density (LDA) and Generalized Gradient (GGA) Approximations

Defficiencies Overestimation: Electron delocalization, metallic character, atomization energies Underestimation: Band gaps, energy barriers

"cheap" solution:DFT (LDA/GGA)+Uon-site Coulomb repulsion"expensive" solution:Hybrid-DFTexact-exchange

Bath Abbey

Systems: Creation of computational model catalysts

Nature

Aggregation

❑ Surfaces & Interfaces
 ❑ Supported nanostructures –clusters → complex systems

Everything should be as simple as it can be but not simpler! Einstein

Questions: Structure \leftrightarrow Function

Active Site

- □ Structure , electronic and vibrational properties –STM, XPS, IR
- □ Surface termination mind pressure gap! → DFT+Statistical Thermodynamics DFT+Monte Carlo
- □ Support effect not always innocent!
- □ Chemisorptive properties TPD

Function

- $\Box \text{ Reactivity Parameters} \rightarrow \text{'Probing' chemical reactivity}$
 - e.g., O defect formation energy
 - ⇒ Best model catalyst candidate
- □ Reaction Mechanisms → Nudged Elastic Band Method

Selected Examples

Oxide Surfaces

□ V₂O₅(001)

- \checkmark Prediction of missing-row defect structure @ reducing conditions \rightarrow confirmed
- Explanation MIT transition at the surface

□ CeO₂(111)

- $\checkmark \mbox{Prediction}$ of localization of excess charge away from the defect $\rightarrow \mbox{confirmed}$
- ✓ Explanation of (2×2) subsurface vacancy ordering
- ✓ Understanding mechanism for partial alkyne hydrogenation

Oxide/Oxide

Elucidation of monolayer catalyst structure
 Understanding support effect on reactivity

Metal/Oxide

□ Au/Al₂O₃/NiAl

Elucidation of electronic structure – counting electrons

PRB 70, 045422 (2004) PRL 99, 226103 (2007)

PRL102, 026101 (2009) PRL 106, 246801 (2011) PRL 110, 246101 (2013) J. Phys. Chem. C 118, 5360 (2014)

Angew. Chem. Int. Ed. 48, 8006 (2009) JACS 132, 2345 (2010) J. Phys. Chem. C 115, 7399 (2011)

PRL 100, 096802 (2008)

✓ Explanation of Ni coverage dependence on reactivity for water-gas shift

J. Phys. Chem. C 117, 8241 (2013)

Vanadium oxide bulk phases

V₂O₅(001): defect structure and MIT transition

DFT predicts the ease of reduction in the direction of the rows Explanation in terms of defect-induced lattice relaxation effects

PRB 70, 045422 (2004) PRL 99, 226103 (2007)

V₂O₅(001): defect structure and MIT transition

CeO_2 : a challenge for DFT -*f*-electron systems

insulator $Ce^{4+}(f^{0})$

Catalysis, Ion Conductor, Gas Sensor, Fuel Cell Component

Ceria reducibility is key to its functionality

 $Ce^{4+}(f^0) \leftrightarrow Ce^{3+}(f^1)$

Kresse, Blaha, Da Silva, Ganduglia-Pirovano, PRB 72 (2006)

Da Silva, Ganduglia-Pirovano, Sauer, Bayer, Kresse, PRB 75 (2007)

CeO₂(111): Near-surface oxygen defect structure

❑ DFT predicts a tendency of Ce³⁺ ions to be away from the defect

□ STM/STS +DFT confirm the tendency of defects to bind to Ce⁴⁺ ions

PRL 106, 246801 (2011)

DFT predicts a preference for subsurface O defects (1/16 $\leq \Theta \leq$ 1ML)

Explanations in terms of defect-induced lattice relaxation effects –Ce³⁺ is larger

PRL102, 026101 (2009)

Ceria as stand-alone catalyst

Angew. Chem. Int. Ed. 2012, 51, 8620-8623

Angewandte Communications

Heterogeneous Catalysis

DOI: 10.1002/anie.201203675

Ceria in Hydrogenation Catalysis: High Selectivity in the Conversion of Alkynes to Olefins**

Gianvito Vilé, Blaise Bridier, Jonas Wichert, and Javier Pérez-Ramírez* Institute for Chemical and Bioengineering Department of Chemistry and Applied Biosciences, ETH Zurich

□ Partial alkyne hydrogenation: crucial step for purification of olefin streams

Conventional catalysts: Pd-based

Hydrogenation reaction mechanism

J. Phys. Chem. C 118, 5360 (2014) THE JOURNAL OF PHYSICA pubs.acs.org/JPCC HEMISTRY

MARCH 13, 2014

VOLUME 118

NUMBER 10

The Hydrogenation **Playground on Ceria** (see page 5352)

ENERGY CONVERSION AND STORAGE, OPTICAL AND ELECTRONIC DEVICES, INTERFACES, NANOMATERIALS, AND HARD MATTER

Molecular-Level Understanding of CeO₂ as a Catalyst for Partial Alkyne Hydrogenation

Javier Carrasco,*^{,†,‡} Gianvito Vilé,[§] Delia Fernández-Torre,^{||,⊥} Rubén Pérez,^{||,#} Javier Pérez-Ramírez,^{*,§} and M. Verónica Ganduglia-Pirovano

- \Box H₂ dissociation \rightarrow limiting step
- \Box Highly reactive β -C₂H₂• radical species Ce³⁺ hydrogenated to form $C_2H_3 \rightarrow$ "barrierless"

 \Box Oligomer formation only at low H₂/C₂H₂ ratios

Oxide supported vanadia $-VO_x$ - catalysts

□ VO_x large variety of oxidation states

V₂O₅ (5+), VO₂ (4+), V₂O₃ (3+), VO (2+)

Important catalysts in oxidation reactions

-SO₂ to SO₃ in the production of sulfuric acid -benzene to maleic anhydride (polyester resins) -oxidative dehydrogenation alkanes to alkenes, methanol to formaldehyde

Reducibility is key to their catalytic function

$$C_{3}H_{8} + [V^{5+}O] \longrightarrow C_{3}H_{7} + [V^{4+}OH] \longrightarrow [V^{3+}] \cdots H_{2}O \longrightarrow [V^{3+}]$$

propane $C_{3}H_{6} + [V^{5+}O] \longrightarrow C_{3}H_{6} - H_{2}O$
Reactivity Parameter
O defect formation $[V^{5+}O] \xrightarrow{-1/2} [V^{3+}]$
The specific support affects the structure and catalytic performance $V_{2}O_{5}/Z_{1}O_{2} \longrightarrow V_{2}O_{5}/Z_{1}O_{2} \longrightarrow V_{2}O_{5}/S_{1}O_{2} \longrightarrow V_{2}O_{5}/S_$

I. Wachs, Catal. Today, 100, 79 (2005)

Reactivity: The origin of the support effect

Angew. Chem. Int. Ed. 48, 8006 (2009) JACS 132, 2345 (2010) J. Phys. Chem. C 115, 7399 (2011)

Origin of the high catalytic activity is the ability of ceria to stabilize reduced states by accommodating electrons in localized f-states, which is promoted by the vanadia species

Oxide supported metal catalysts

Hydrogen is expected to play an important role in future energy scenarios

 \Box H₂ production

- $_{\odot}$ Steam reforming of hydrocarbons: $C_{n}H_{m}$ + $nH_{2}O$ \rightarrow nCO + (n-m/2)H_{2}
- \circ Fuel contains 1-10% CO \rightarrow Pt electrode degradation
- Water-gas shift: $CO + H_2O \rightarrow H_2 + CO_2$

WGS catalysts

 \circ classic catalyst formulation: mixed Fe and Cr or Cu and Zn oxides \rightarrow drawback: long preconditioning

o new catalysts: metal-Pt, Au-particles supported by reducible oxides-TiO₂, CeO₂

Fu et al., Science 301 (2003) 935

Bifunctional: CO adsorbs on metal H₂O dissociates on oxide

cluster size
 charge of the metal cluster
 metal/oxide support interface

Counting electrons on oxide supported Au chains

The model: Au on a thin alumina on NiAI(110)

Support structure:

Kresse, Schmid, Napetschnig, Shishkin, Köhler, Varga, Science 308, 1440 (2005)

Kulawik, Nilius, Freund, PRL 96, 036103 (2006)

Self-assembly Au chains: STS & STM

PRL 100, 096802 (2008)

Au chains

Au on a thin alumina film on NiAl: STS & STM

PRL 100, 096802 (2008)

Orbital shape	No. of Maxima	No. of Electrons
00000	5	10
\bigcirc	4	8
\bigcirc	3	6
\bigcirc	2	4
	1	2

Au on a thin alumina film on NiAl: STS & STM

PRL 100, 096802 (2008)

the number of nodes and magnetization can be explained

PRL 100, 096802 (2008)

WGS catalysts

 \circ classic catalyst formulation: mixed Fe and Cr or Cu and Zn oxides \rightarrow drawback: long preconditioning

o new catalysts: metal-Pt, Au-particles supported by reducible oxides-TiO₂, CeO₂-bifunctional

Fu et al., Science 301 (2003) 935

o promising water-gas shift catalysts: Ni/ceria

collaboration Brookhaven

 $CO + H_2O \rightarrow CO_2 + H_2$

The power of synergy

Acknowledgements

Veronika Brázdová, R. Fortrie, Juarez L. F. Da Silva, Cristina Popa, Joachim Sauer, Gustavo Murgida, Javier Carrasco, David López-Durán

Collaboration: Niklas Nilius Hans-Joachim Freund (FHI-Berlin) Jose A. Rodriguez Ping Liu (BNL) Laura Barrio (ICP-CSIC) Javier Pérez-Ramírez (ETH-Zürich)

Funding: Deutsche Forschungsgemeinschaft-SFB 546 EULANEST CERENH2 FP7-PEOPLE-2011-CIG NanoWGS; MINECO-CTQ2012-32928 COST CM1104

Computer time: Nordeutscher Verbund für Hoch- und Höchstleistungsrechnen SGAI-CSIC; RES @ CESGA; BIFI-ZCAM Barcelona Supercomputing Center Rechenzentrum Garching through PRACE