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How science directions are chosen:

http://science.energy.gov/bes/news-and-resources/reports/

Computational materials science, particularly at the mesoscale, is a focus
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Energy Frontier Research Center
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Government and industry are looking into exascale computer power
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ExMatEx - Extreme Materials at Extreme Scale

NEWS ABOUT PROXY APPS + RESEARCH AREAS + UBLICA 5 ENGAGEMENT LINKS

ExMatEx Overview

Dok Exascale Co-Design Center for Materials in Extreme Environments

The objective of the Exascale Co-design Center for Materials in Extreme Environments (ExMatEx) is to estahlish the interrelationship
among algorithms, system software, and hardware required to develop a multiphysics exascale simulation framework for modeling
materials subjected to extreme mechanical and radiation environments. Such a simulation capability will play a key role in solving many
of today’s most pressing problems, Including producing clean energy, extending nuclear reactor lifetimes, and certifying the aging
nuclear stockpile.

Our goal is to establish the interrelationships between hardware, middleware (software -“Iﬁzﬂ L‘
stack), programming models and algorithms to enable a productive exascale environment for [ Aot
multiphysics simulations of materials in extremne mechanical and radiation environments. J -:;;y I
0

We will exploit, rather than avoid, the greatly increased levels of concurrency, heterogeneity, ,,:_b-" ,;—*’ | fﬁ':\,\
and flop/byte ratios expected on the upcoming extreme scale platforms. Ty A '_?Lf“;"'r*

CoOe Hen C;J'-;ﬂn;':'l
Co-design of the exascale ecosystem involves ExMatEx and other application co-design centers | Fotain = -

werking in concert with hardware vendors and other computer science research activities as
illustrated in the image 1o the right. The computer system architecture is shown to contain both the
emerging hardware as well as all of the software stack required to operate the computer. The role of the application co-design center is
to both introduce our evolving application requirements and workflow into the exascale ecosystem through proxy application and to
evaluate these applications in the context of emerging hardware and software solutions,

Research Areas

Our research spans s broad set of topics including computer science, algorithms, and applications
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Subjects chosen to become the equivalent to LINPACK benchmarks for the
exascale era

The Motifs of Materials Application Codes

Ab-initio MD Long-time | Phase Field | Dislocation Crystal Continuum

Inter-atomic Defects and defects and Meso-scale Meso-scale Macro-scale Macro-scale

forces, EOS interfaces, defect multi-phase strength material material

nucleation structures evolution response response
= o 18 BPy
16axitasitn m
i ‘N\".
!|' :@ -3",05 o L] L]
_'h._?.——
Code: Qbox/ Code: SPaSM/ Code: SEAKMC | Code: AMPE/GL | Code: ParaDis Caode: VP-FFT Code: ALE3D/
LATTE ddcMD/CoMD LULESH
Motif: Particles Motif: Particles, Motif: Particles Motif: Regular Motif: Motif: Regular Motif: Regular
and explicit time and defects, and adaptive “segments” grids, tensor and irregular
wavefunctions, integration, explicit time grids, implicit Regular mesh, arithmatic, grids, explicit
plane wave neighbor and integration, time integration, | implicit time meshless image | and implicit time
DFT, linked lists, neighbor and real-space and integration, fast | processing, integration.
Scal APACK, dynamic load linked lists, and spectral multipole implicit time
BLACS, and balancing, parity | in situ methods, method integration, 3D | Prog. Model:
custom parallel | error recovery, visualization complex order FFTs. MPI + Threads
3D FFTs and in situ parameter Prog. Model:
visualization Prog. Model: MPI Prog. Model:

Prog. Model: MPI + Threads Prog. Model: MPI + Threads
MPI + CUBLAS/ | Prog. Model: MPI
CuDA MPI + Threads
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Example of exascale challenges: Sublattice parallel replica dynamics
Enrique Martinez, Blas P. Uberuaga, and Arthur F. Voter (in press)
« Exascale computing presents a challenge for the scientific community as new algorithms must be developed to take full

advantage of the new computing paradigm

»  Molecular dynamics and parallel replica dynamics fail to use the whole machine speedup, leaving a region in time and sample
size that is unattainable with current algorithms

«  Molecular dynamics (MD) algorithms are extremely efficient in parallelizing space, and therefore large atomic systems can be
simulated for short times with unprecedented accuracy

»  However, these traditional algorithms are not suitable for studying long-time phenomena, such as vacancy diffusion, as they
become communication bound and the characteristic time for the process becomes extremely hard to attain

« Parallel replica dynamics (PRD) exploits the fact that for many physical processes the system ftrajectory executes transitions from
state to state on time scales orders of magnitude larger than the atomic vibrations; i.e., the dynamics of the system are
dominated by infrequent events.
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A new strategy for domain decomposition alows to fill part of the gap in the
exascale triangle
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Exascale triangle, assuming 107 processors,
for the three different methods, MD (blue),
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Spatial domain decomposition. To
avoid boundary conflicts the domains
are further divided into subdomains.
Simulation cycles among the colors,
performing parallel replica dynamics in
each of the subdomain independently
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Our work on computational materials science at the
atomic scale focuses on several challenges

Empirical

potentials

The ‘electron barrier’ / \ The ‘thermal barrier’
\ S/

Abinitio

energetics Pl hermodynamics

The ‘size/time barrier’
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The ‘electron barrier: ' Fe polymorphism

T. Lee & S. Valone
MST-8 Materials Science and Technology
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Classical potentials have so far been
unable to capture both transitions

— atriple point simultaneously
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Finite-T properties are difficult to capture when electronic
effects are important

EAM and CALPHAD Fe Heat capacities of pure
enthalpies and entropies metals
Frrrrrrrrrrrrrrrer e e o i sl ‘o':
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1.8 < o | , | , L
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" 4t . L
X """":o 0 , , : . \ : Temperature {K)
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Temperalure (K) T (K)
Dots: experimental data
Lines: empirical potentials Cu, shown for comparison

From E. Martinez 2012

This behavior represents a major obstacle for empirical potentials for Fe, whose validity is therefore
restricted to the FM phase, well below the Curie T
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The ‘thermal barrier’

ODS ferritic steels, Miller 2009

Ferranda el al.

Most of the nano- -
engineered materials . -
today are Pt Pd
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Field/Frequency

A ._.. ge "
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systems, where
thermodynamics and
kinetics play crucial roles
in determining their _ | _
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1) Pi—Pd. (B) Pi—Rh, and (C) Pr—Ru. Pt, Pd. Rh, and Ru atoms
& shown in blue, green, red, and black. respectively. (Reprinted
with penmission from ref 129 Copyright 2003 American Chemical
Socety.)
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The ‘thermal barrier’

Computational thermodynamics St tyse
Free energy G cannot be obtained as an ensemble average . . .
We use Mixed Hamiltonian with switching parameter A
JU+ (1 — )W o
Free energy F;, of the harmonic oscillator system can be computed . . .
analytically
T i 0
T Einstein )»

Evaluate the ensemble with respect to the pure Hamiltonians U
(full interaction) and W (harmonic oscillators) and compute

]
GU=GW+/ (U — WdA
0

-

v
switching work

We implemented this technique in Lammps (free distribution MD code)

g
. LE% Alamos
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Other systems studied
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Figure 4. Equilibrium binary phase diagram computed using (a) EAM, () EAM2 and (¢) EAM3,
compared with experimentsl phase diagram from [1]. The phase disgram from EAM| shown in
(@) is closest to the experimentally determined Cu—Nb phase diagram among all three potentials
tested in this study.
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Nucleation of o’ in FeCr

Free Energy @ [eV]

500 i T T " ; ' '
08

—_— L i 7
FE:; 400 g 06 -
£ Z ]
el 0.4 -
3 2 ]
& .
g P I S S R B ]
i‘g 1 2 3 4 5
& 200 precipitate radius [mm] —
3 o (100] ]
% o [110}
100 - A (111} .
?_:3 — polynomial Gt
' ) S T T O N Y Y Y R N 1. T A [ SR
0 500 10040 1500 2000 2500 3000

Temperature T [K]

Fig. 2 Interfacial free energy of the FeCr system as a function temperature obtained
by Sadigh and Erhart [6] using variance constrained semi grand canonical Monte
Carlo simulations., The solid line shows the polynomial fit to the data used in our
calculations. The inset shows the radius dependence of the interfacial energy
normalized by the flat interface energy at 0 K
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Fig. 3. Phasadiagram of the FeCr system, calculated from the free energy surface,
The solid curve marks the miscibility gip of the FeCr system, the dashed curve
marks the spinodal line (the boundary of the thermodynamically unstable reglon).
The diamond symbols with error bars show the solubility limits as obtained by a
semi grand canonical Monte Carlo simulition. The shaded region zives a range of
possible Cr solubility limits in Fe as obtained by Xiong et al [3] while the triangles
are resuits from cluster expansion ((E) caloulations fitted to first principles data
[17}.
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Fig. 6. Nucleation rates R per unit volume for the dassical nucleation theory (black)
and local depletion (gray) cases as a function of solute concentration in the matrix
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Microstructural evolution of Feg,Cr,, at 535 K

Work on LKMC modeling done at LANL
by E. Martinez in collaboration with CEA
Saclay (Fr)
as part of the EFRC program

Work on Phase Field modeling by M. Tonks and P. Millet (INL)
as part of the NEAMS program

In a single crystal In presence of an edge dislocation dipole LKMC 3D atom probe
Novy et al (2009)
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The size / time barrier
Atomistic Kinetic Monte Carlo

Louis Vernon, Enrique Martinez, Blas Uberuaga, Art Voter, and Alfredo Caro
T and MST Divisions

Objective:

Many systems of interest share a common feature: their long-time dynamics consists of
infrequent jumps between different states (i.e., activated processes).

Accelerated Molecular Dynamics methods (A. Voter’s) and kinetic Monte Carlo (KMC)
algorithms can be used to extend the simulated time.

In this presentation we focus in the KMC algorithm

A
A
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The MD timescale problem

Classical MD can only reach nanoseconds to
microseconds due to the stiffness of the

equations of motion (time step is limited to fs)
Processes of interest often take much longer:

» Vapor-deposited film growth (s)

» STM/AFM surface manipulation,
nanoindentation (ms —s)

» Bulk and surface diffusion processes
» Radiation damage annealing (ns to years)

* Protein folding (us - s)

» Precipitation

Operated by Los Alamos National Security, LLC for NNSA I WA s 18



Our Kinetic Monte Carlo Approaches
d Self-learning KMC

= Dynamically explores the potential energy surface to discover all processes.
= Calculate the rates accurately.

= |s accurate and computationally demanding.

Defects diffuse to and within a
complex grain boundary - evolved
using SL-KMC.

Transition searches on a
distorted eggbox potential.

) Event-driven KMC

= Uses the local microstructure to guess possible processes
= The accuracy in the rate calculation can be chosen

= Computationallv less demanding. Clustering of
IR e WO vacancies at a (110)
twist boundary in Fe,
composed of a
network of screw
dislocations

i ™ o SRR

Cluster of vacancies in a (100)
twist boundary in Cu, showing the
preference for vacancies to go to

constrictions

20
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Self-Learning kinetic Monte Carlo

Transition searches are pricey

® Computationally more demanding than predefined processes.

— Optimisation is essential.
- Efficient transition searches.
— Defect localisation.
« Information recycling.
« Parallelised workload.

| KMC Dispatcher |
l MPI l MPI

— KMC Server KMC Client(s)

y Threads ‘—+ Threads +—+ Threads

Status Update

Communicator -+— Communicator

MPI
Transition searches are localised to Transition searches and
Pa regions containing defects. minimisations are distributed across

awl;;Alamns many processors using MPI.
HATIOMAL LABORATORY

. : WA 20
Operated by Los Alamos National Security, LLC for NNSA I lvm,i



Localisation allows categorisation

® Localising defects:
o Reduced search dimensionality.

o Defect classification.
= Defect recognition.

.. ..
l.. P —
@

Atoms local to a vacancy A connectivity graph/hash The vacancy rapidly diffuses with
(highlighted) are extracted. representation is determined. no new transition searches.
Transitions can be mapped onto equivalent defects

'/".
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Event-Driven Kinetic Monte Carlo
Off-lattice Relaxations
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Radiation effects on nanoscale metallic foams

Obijective:

« Explore the physics of surface-driven bulk physical behavior, such
radiation tolerance Cover of Nano Letters July 2012

Opportunity:

* Nanoporous materials could become a
new class of extremely radiation tolerant
materials

— Nanoporous materials offer a large
amount of free surfaces

— Free surfaces act as sinks providing
opportunities for irradiation induced
defects to annihilate through diffusion

Y i \ -
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Radiation e ecton na
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Making foams in the computer

Two methods have been reported:
*Spinodal decomposition (an AB solution with a miscibility gap

*Gas condensation (solidification of a low density gas

P

Experimental sample = Computer sample
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HRTEM shows SFTs are formed in irradiated
np-Au

» SFTs are observed in np-Au foams irradiated at RT at intermediate and
high flux values; i.e. flux > 6x101° jons/cm?/s

* No SFTs observed at low dose-rates and/or LNT irradiations

W?‘ ~5 nm Iarqe SFT along (110) projection at the highest flux of 3x1012 /cm?/s
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Are nanofoams radiation resistant?
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Major results:
+ Awindow of radiation resistance

« Radiation produces little damage in nanoscale
foams, due to the large surface to volun:y

+ Main damage mechanisms is the creatiori of
stacking fault tetrahedra, which induce a
softening of the foam

« Strong a-symmetry in the mechanical response in
tension and compression
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Nanoscale He bubbles
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FIG. 3. Qualitative picture of the radial S 10k N p =1.0He/Vac b
dependence of pressure in a 2nm di- = N~ T=600K -
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FIG. 5. Average pressure of a bubble of varying radius in the range (-2 nm
10- at density 1 He/Vac and T =600 K. Also, in the figure the pressure of pure

He at that density is indicated as a horizontal line. A significant deviation of
pressure from the pure He EOS is apparent for bubbles below 2nm in
E 0.8 radius.
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o The interface width, determined by the metal-He interaction,
dominates the properties of nanoscale bubbles, leading to the
00— S need of defining a new EOS for He in bubbles, that depends
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FIG. 1. Psir potentials for the He-He interaction from Ref. 21 and for He-Fe
from Ref. 18, While the range of the He-He interaction can he considersd
nearest neighbors lor the He densities of interest (~1 He/Vac), the range of
the He-Fe goes well beyond that distance.
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Summary and Future Directions

Our computational materials science work is based on both,

* The use of well established techniques such as:
— Ab initio electronic structure calculations to predict energetics of materials
— Classical molecular dynamics
— Computational thermodynamics

* The development of new models, algorithms, and tools to address problems such as:
— The ‘electron barrier’
— The ‘thermal barrier’
— The ‘size / time barrier’

The research portfolio of our group on multiscale computational modeling is
characterized by a significant effort on the development of new models, algorithms and
tools at almost every scale in the multiscale paradigm, aiming at improving the current

fidelity and accuracy limitations
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