The non-innocent role of cerium oxide in heterogeneous catalysis: a theoretical perspective

M. Verónica Ganduglia-Pirovano

Institute of Catalysis and Petrochemistry, Spanish National Research Council -CSIC, Madrid, Spain

Catalysis Today 253 (2015) 20-32

Cerium oxide: Reducibility and catalytic function

Use & Applications

□ present as support in metal & oxide catalyst formulations → improved performance

 \Box catalytic converter \rightarrow purification of exhaust gases

□ solid-fuel cell technology → H_2 production

http://www.rhodia-ec.com/site_ec_us/catalysis/index_automotive.htm

Oxygen Storage Capacity

an 'oxygen-sponge'

releasing and storing oxygen according to the catalytic reaction (oxidation or reduction)

 ${\bf Ce}^{4+}(f^0) \leftrightarrow {\bf Ce}^{3+}(f^1)$

Ceria reducibility is key to its functionality and promoter effect

Ceria and its non-innocent role as support

□ Stand-alone catalyst

Collaboration: J. Pérez-Ramírez ETH, Zurich

 $CeO_2(111) \rightarrow Partial alkyne hydrogenation$

Reactivity of ceria surfaces: $H_2 \rightarrow H+H$ dissociation $C_2H_2 + n H \rightarrow C_2H_{2+n}$ ethylene hydrogenation

Support

 $V_mO_n/CeO_2(111) \rightarrow ODH \ reactions$

Structure and reactivity of supported vanadia

Collaboration: J. Sauer (HU-Berlin); H.J. Freund (FHI-Berlin)

Collaboration: J. A. Rodríguez BNL, USA

 $Ni_n/CeO_2(111) \rightarrow H_2$ production

Structure and reactivity of supported nickel

Ceria as stand-alone catalyst

□ Partial alkyne hydrogenation: crucial step for purification of olefin streams

1 eV ~96 kJ/mol ~23 kcal/mol

Fernández-Torre, Carrasco, Ganduglia-Pirovano, Pérez, J. Chem. Phys. 141 (2014)

 $\Box H_2(gas) + CeO_2(111) \rightarrow 2H / CeO_2(111) \quad \Delta E = 2.4 \text{ eV highly exothermic} \quad PBE+U(4.5)$

Previous work: too low H₂ dissociation barrier ~0.2 eV !! [($\sqrt{3}\times1$) cell, PW91+U(6.3)]

H-T Chen et al., ChemPhysChem 8, 849 (2007)

Finding a saddle point

Minimum Energy Path (MEP): Path with highest transition probability Components of force orthogonal to the path is zero $\nabla E(\mathbf{R}_i)|_{perp} = -(\nabla E(\mathbf{R}_i) - \nabla E(\mathbf{R}_i), \mathbf{\tau}_i) = 0$

The Nudged Elastic Band method

Initial & Final configurations known

□ Distribute images (replicas) of the system connected with springs along some path between initial and final state (e.g., linear interpolation).

 \checkmark Spring force does not interfere with the relaxation \perp to the path; they distribute images along path \checkmark True force does not interfere with image spacing || to the path; they bring the band to the MEP

$$\vec{\nabla} V(\vec{R}_i)|_{\perp} = 0$$

Henkelman, Johannesson and Jonsson, Progress in Theoretical Chemistry and Physics (Kluwer Academic, 2000)

Mills, Jónsson, Schenter, Surf. Sci. **324**, 305 (95)

H_2 on $CeO_2(111)$: dissociation mechanism

Fernández-Torre, Carrasco, Ganduglia-Pirovano, Pérez, J. Chem. Phys. 141, 014703 (2014)

$$\begin{array}{ccc} H^{\delta \pm} & H^{\delta -} \\ 1: & / & \\ Ce^{4+} & O^{2-} \end{array}$$

TS2: Ce–H and O–H bonds

Final: $2 \times O - H$ bonds

In agreement with: García-Melchor, López , J. Phys. Chem. C118, 10921 (2014)

- \Box H₂ dissociation \rightarrow limiting step
- □ Highly reactive β -C₂H₂•radical species form C₂H₃ → "barrierless"
- Oligomer formation only at low H₂/C₂H₂ ratios; neighboring O sites not available at high ratios

Ceria as stand-alone catalyst

MARCH 13, 2014 VOLUME 118 NUMBER 10 pubs.acs.org/JPCC

THE JOURNAL OF PHYSICAL CHEMISTRY

ENERGY CONVERSION AND STORAGE, OPTICAL AND ELECTRONIC DEVICES, INTERFACES, NANOMATERIALS, AND HARD MATTER

Molecular-Level Understanding of CeO₂ as a Catalyst for Partial Alkyne Hydrogenation

Javier Carrasco,*^{,†,‡} Gianvito Vilé,[§] Delia Fernández-Torre,^{∥,⊥} Rubén Pérez,^{∥,#} Javier Pérez-Ramírez,*^{,§} and M. Verónica Ganduglia-Pirovano[†]

J. Phys. Chem. C 118, 5352 (2014)

Ceria and its non-innocent role as support

□ Stand-alone catalyst

Collaboration: J. Pérez-Ramírez ETH, Zurich

 $CeO_2(111) \rightarrow Partial alkyne hydrogenation$

Reactivity of ceria surfaces: $H_2 \rightarrow H+H$ dissociation $C_2H_2 + n H \rightarrow C_2H_{2+n}$ ethylene hydrogenation

Support

 $V_mO_n/CeO_2(111) \rightarrow ODH \ reactions$

Structure and reactivity of supported vanadia

Collaboration: J. Sauer (HU-Berlin); H.J. Freund (FHI-Berlin)

Collaboration: J. A. Rodríguez BNL, USA

 $Ni_n/CeO_2(111) \rightarrow H_2$ production

Structure and reactivity of supported nickel

Oxide supported vanadia $-VO_x$ - catalysts

□ VO_x large variety of oxidation states

V₂O₅ (5+), VO₂ (4+), V₂O₃ (3+), VO (2+)

□ Important catalysts in oxidation reactions

 $-SO_2$ to SO_3 in the production of sulfuric acid

-benzene to maleic anhydride (polyester resins)

-oxidative dehydrogenation alkanes to alkenes, methanol to formaldehyde

I. Wachs, Catal. Today, 100, 79 (2005)

VO_x /ceria: The experimental facts

Experimental model

M. Baron, H. Abbott, O. Bondarchuk, D. Stacchiola, A. Uhl, S. Shaikhutdinov, H.-J. Freund, C. Popa, M. V. Ganduglia-Pirovano, J. Sauer, Angew. Chem. Int. Ed. 48, 8006 (2009)

Powder samples:

Martinez-Huerta, Deo, J L Fierro, Bañares, JPC C 112, 11441 (2008)

$VO_x/CeO_2(111)$: The experimental facts

STM: Monomers, Dimers, Trimers

Baron, Abbott, Bondarchuk, Stacchiola, Uhl, Shaikhutdinov, Freund, Popa, Ganduglia-Pirovano, Sauer, Angew. Chem. Int. Ed. 48, 8006 (2009)

Monomers, dimers, trimers: similar apparent height \rightarrow "flat" structures

Trimer: spot-spot distance ~ CeO_2 lattice (3.9 Å)

 IR: V=O stretch monomer → polymeric
blue shift ~25cm⁻¹
I¹

Theoretical Models: The strategy

□ Reactivity

DFT+U & statistical thermodynamics -> Structure

- Themodynamic stability \rightarrow surface free energy $\gamma [\mu_i(T, \rho_i)]$
- Electronic structure
- Vibrations (IR); diagonalization of Mass-Weighted Hessian Matrix
- Reactivity

Theoretical models: VO_x/CeO₂(111)

Monomeric Species $CeO_2(111) + V + n \cdot \frac{1}{2}O_2 \rightarrow VO_n/CeO_2(111)$

CeO₂(111)

V/CeO₂(111)

V⁵⁺-O-Ce³⁺

Baron. Abbott, Bondarchuk, Stacchiola, Uhl, Shaikhutdinov, Freund, Popa,

Ganduglia-Pirovano, Sauer, Angew. Chem. Int. Ed. 48, 8006 (2009)

PBE+U, U=4.5 eV (2×2) u.cell

Theoretical models

Monomeric Species $CeO_2(111) + V + n \cdot \frac{1}{2}O_2 \rightarrow VO_n/CeO_2(111)$

Vanadia species are **NOT** reduced!

Stability VO_n/CeO₂(111)

$$CeO_2(111) + V + n \cdot \frac{1}{2}O_2 \xrightarrow{} V_mO_n/CeO_2(111)$$

$$\Delta \gamma$$
 (T,p) = [G $V_m O_n / CeO_2 - G^{CeO_2} - \mu_V - n \cdot \frac{1}{2} \mu_{O_2}(T,p)]/A$

$$\Delta \gamma$$
 (T,p) \approx [E $V_m O_n / CeO_2 - E CeO_2 - E^{Vbulk} - n \cdot \frac{1}{2} \mu_{O_2}(T,p)$] /A

Oxygen chemical potential

$$\mu_{O_2}(T,p) = \mu_{O_2}(T,p^{\circ}) + RT \ln(p/p^{\circ})$$

VO_n/ceria monomers: Phase diagram

IR spectra and the nature of the supported species

а

b

С

V₁₀₀₆

1033

1040

950

900 v/cm^{-1}

monomer VO₂

trimer 3VO₂

Reactivity: The origin of the support effect

Angew. Chem. Int. Ed. 48, 8006 (2009) JACS 132, 2345 (2010) J. Phys. Chem. C 115, 7399 (2011)

Origin of the high catalytic activity is the ability of ceria to stabilize reduced states by accommodating electrons in localized f-states, which is promoted by the vanadia species

Ceria and its non-innocent role as support

□ Stand-alone catalyst

Collaboration: J. Pérez-Ramírez ETH, Zurich

 $CeO_2(111) \rightarrow Partial alkyne hydrogenation$

Reactivity of ceria surfaces: $H_2 \rightarrow H+H$ dissociation $C_2H_2 + n H \rightarrow C_2H_{2+n}$ ethylene hydrogenation

Support

 $V_mO_n/CeO_2(111) \rightarrow ODH \ reactions$

Structure and reactivity of supported vanadia

Collaboration: J. Sauer (HU-Berlin); H.J. Freund (FHI-Berlin)

Collaboration: J. A. Rodríguez BNL, USA

 $Ni_n/CeO_2(111) \rightarrow H_2$ production

Structure and reactivity of supported nickel

Ceria supported Ni catalysts for H₂ production

 $CO + H_2O \rightarrow H_2 + CO_2$ Water-gas shift

 \circ conventional catalyst: mixed Fe and Cr or Cu and Zn oxides \rightarrow drawback: long preconditioning

o new catalysts: precious metal-Pt, Au-particles supported by reducible oxides-TiO₂, CeO₂ Fu et al., Science 301 (2003)

Zhou et al., Angew. Chem. Int. Ed. 49 (2010) 9680

Ni/CeO₂(111) model catalyst: metal-support interaction

Ni⁰

of the metal-oxide interactions

H₂O/ceria: Theoretical facts

D. Fernández-Torre, K. Kósmider, J. Carrasco, M.V. Ganduglia-Pirovano, R. Pérez, JPCC 112, 13584 (2012)

Reference	Method	Unit cell	MS1	MS2	MS3	HP1	HP2
Kumar and Scheling ¹	PW91	2x1	-0.58	-	-	-	-
Chen et al ²	PW91	√3x1	-0.49	-0.52	-	-	-
Watkins et al ³	PW91	2x√2	-	-	-0.35	-0.65	-0.15
Watkins et al ³	PW91+U(5 eV)	2x√2	-	-	-0.36	-0.66	-0.16
Fronzi et al ⁴	PBE	2x2	-	-0.49	-0.33	-0.36	-
Yang et al⁵	PBE+U(5 eV)	2x2	-0.58	-	-	-0.55	-

Nature of the adsorption state: molecular or hydroxyl pair?

H₂O/ceria: DFT prediction

D. Fernández-Torre, K. Kósmider, J. Carrasco, M.V. Ganduglia-Pirovano, R. Pérez, JPCC 112, 13584 (2012)

Method	cell	MS1	HP1	HP2
PBE	(2×2)	-0.50	-0.45	-0.24
PBE+U	(2 ×2)	-0.54	-0.52	-0.24
PBE+U	(3 ×3)	-0.55	-0.60	-0.17
HSE06	(2 ×2)	-0.49	-0.47	-0.24
vdW-DF+U	(2×2)	-0.72	-0.70	—
vdW-DF+U	(3×3)	-0.73	-0.76	-0.32

vdW-DF: $E_{\rm xc} = E_{\rm x}^{\rm GGA} + E_{\rm c}^{\rm LDA} + E_{\rm c}^{\rm nl}$ OPT86b-vdW

Dion, Rydberg, Schroder, Langreth, Lundqvist, PRL 92, 246401 (2004)

- Water dissociation \rightarrow **NOT** favorable
- Molecular & hydroxyl pair \rightarrow close in energy
- E_{ad} ~ 0.7 eV (exp ~ 0.9 eV)
 - vdW contribution to binding ~ 0.18 eV

Consistency with triangular shape?

H₂O/ceria: DFT prediction

D. Fernández-Torre, K. Kósmider, J. Carrasco, M.V. Ganduglia-Pirovano, R. Pérez, JPCC 112, 13584 (2012)

In agreement:

¹ D. Marrocchelli and B. Yildiz, J. Phys. Chem. C 116, 2411 (2011).

Water dissociation on Ni/CeO₂(111) •••• Ni⁰ 0.90 0.5 Energy [eV] 0 -0.5 Ni(111) CeO_{2-x}(111) H₂O ΤS H+HO CeO_{2-x}(111): barrierless¹ \rightarrow strongly bound OH species Ni(111): high barrier² \rightarrow moderately bound OH species

In agreement:

¹ D. Marrocchelli and B. Yildiz, J. Phys. Chem. C 116, 2411 (2011).

² A. A. Phatak et al., J. Phys. Chem. C 113, 7269 (2009).

Water dissociation on Ni/CeO₂(111)

Water dissociation on Ni/CeO₂(111)

Ni²⁺ species –in direct contact with the support – are able to fastly cleave O–H bonds

H_2O dissociation: ambient-pressure X-ray photoelectron spectroscopy

Carrasco et al., Angew. Chem. Int. Ed. 54 (2015)

 H_2O_{ads}

534

Θ_{OH}: 0.20 ML

Θ_{ОН}: 0.37 ML

lattice 0

-OH > factor 2

-OH

532

 $CeO_{2}(111)$

Ni/CeO₂(111)

Binding Energy (eV)

530

528

O1s XPS spectra CeO₂(111) Ni/CeO₂(111) $CeO_2(111)$ Ni/CeO₂(111) **⊙**≈0.15 ML 200 mTorr Lattice Lattice Oxygen 200 mTorr Normalized Intensity 300 K Oxygen 500 K Normalized intensity OH >10-25% -OH -OH H_2O_{ads} H_2O_{ads} H_2O_{gas} H₂O H_2O_{gas} 538 536 534 532 530 528 538 536 534 532 530 528 **Binding Energy (eV) Binding Energy (eV)** 538 536 Θ_{OH}: 0.90 ML Θ_{OH}: 0.78 ML

deactivation $2CO \rightarrow C+CO_2$ coke

$Ni/CeO_2(111)$: the C-O bond cleavage

CO formation that remains on the surface - less coke formation \rightarrow support effect

C non-oxidative adsorption on Ni/CeO₂(111)

C–Ni bond:

Ni₁ < Ni₄ < Ni(111)

$Ni/CeO_2(111)$: the C-O bond cleavage

Ni/CeO_2 for H_2 production: a promising catalyst

The activity, selectivity, and stability of Ni/CeO₂ catalysts for WGS depend on strong metal–support interactions

Conclusions: ceria support effect

At the origin of the –beneficial–support effect is the ability of ceria to stabilize reduced states by accommodating electrons in localized f-states.

VO_x/CeO₂

 High catalytic activity of VO_x/ceria relates to a synergy between the ceria support and the supported oxide

 \rightarrow ceria –promoted by vanadia– is the active species

Ni/CeO₂

- Ni oxidation state \rightarrow Ni²⁺
- C–O bond strength \rightarrow least weaken
- H_2O dissociation $\rightarrow Ni$ modified by metal-support interactions, plays a direct role
- □ The fast dissociation of water on Ni/CeO₂ has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift reaction

Angew. Chem. Int. Ed. 48, 8006 (2009) JACS 132, 2345 (2010) JPC C 115, 7399 (2011)

JPCC 117, 8241 (2013) Angew. Chem. Int. Ed. 54, 3917 (2015)

Towards the rational design of catalysts

